БЛОК КОММУНИКАЦИОННЫЙ **BCE-2**

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокунецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Содержание

1	Описание и работа	. 3
	1.1 Назначение	. 3
	1.2 Технические характеристики	. 4
	1.3 Устройство и работа	. 4
	1.4 Маркировка	. 8
2	Использование по назначению	. 8
	2.1 Эксплуатационные ограничения	. 8
	2.2 Подготовка изделия к использованию	. 8
	2.3 Пробное включение	10
	2.4 Диагностика и устранение неисправностей	10
3	Настройка блока	10
	3.1 Настройка с помощью Веб-консоли	10
	3.2 Настройка ІР-адреса	11
	3.3 Настройки IP-адреса по умолчанию	11
	3.4 Настройка параметров последовательного порта	11
	3.5 Настройка режима подключения удаленных устройств	12
	3.6 Настройка режима удлинения линии связи	13
	3.7 Сброс параметров блока	14
4	Техническое обслуживание	14
5	Транспортирование и хранение	14

Настоящее руководство по эксплуатации распространяется на блок коммуникационный ВСЕ-2 ГУКН.423395.003.

Руководство по эксплуатации предназначено для изучения блока коммуникационного ВСЕ-2 ГУКН.423395.003 и содержит технические характеристики, описание работы, конструкции и другие сведения, необходимые для правильной эксплуатации и обслуживания, а также монтажа и наладки блока на месте эксплуатации.

1 описание и работа

1.1 Назначение

Блок коммуникационный BCE-2 ГУКН.423395.003 (далее по тексту – блок BCE-2) предназначен для работы в качестве преобразователя интерфейса RS-232/485 в Ethernet.

Блок BCE-2 служит в качестве моста для подключения устройств с последовательным интерфейсом к сети Ethernet.

Блок предназначен для работы в одном из двух режимов:

- подключение удаленных устройств;
- удлинение линии связи между двумя устройствами.

В первом режиме блок BCE-2 используется для подключения устройств с интерфейсом RS-232 или RS-485 к контроллеру (компьютеру пользователя) по сети Ethernet при нехватке на нем аппаратных СОМ-портов или значительном удалении устройств.

Во втором режиме пара блоков ВСЕ-2 используется для удлинения линии связи между двумя устройствами с интерфейсом RS-232 или RS-485. В этом режиме блоки осуществляют прозрачную для устройств передачу данных RS-232/485 по сети Ethernet.

Блок оснащен энергонезависимой памятью для сохранения настроек и кнопкой сброса настроек в значения по умолчанию. Настройка блока выполняется через Веб-консоль.

Блок BCE-2 имеет четыре входных изолированных дискретных канала, доступ к которым возможен по сети Ethernet.

Блок ВСЕ-2 предназначен для использования вне взрывоопасной зоны. Связь с электрооборудованием, расположенным во взрывоопасной зоне, осуществляется по требованиям на взрывозащиту конкретных видов, согласно комплекту государственных стандартов на взрывозащищенное оборудование.

Блок BCE-2 предназначен для непрерывной работы.

Блок ВСЕ-2 является составной частью КП ГУКН.421447.004-X-X-X. Полное описание КП данного типа приводится в руководстве по эксплуатации на измерительно-управляющую систему на основе программно-технического комплекса «Каскад-САУ» ГУКН.421457.002РЭ.

1.2 Технические характеристики

Основные технические характеристики блока ВСЕ-2 приведены в таблице 1.

Таблица 1

Общие параметры						
Конструктивное исполнение	Корпус для крепления на DIN- рейку 35 мм					
Габаритные размеры	99х114х45 мм					
Напряжение питания	2226 B					
Ток потребления, не более	85 MA					
Масса, не более	108 г					
Диапазон рабочих температур	от 0 до плюс 50 °C					
Интерфейс Ethernet						
Количество портов Ethernet	1					
Модификация Ethernet	10/100Base-T, Auto-MDI/MDI-X					
Сетевые протоколы	ICMP, TCP, DHCP, HTTP					
Поддорукиварми ю ОС	Windows, UNIX, Solaris, QNX,					
Поддерживаемые ОС	FreeBSD, AIX, Mac OC					
Последователь						
Количество портов RS-232/485	1					
Скорость обмена	50230400 бит/с					
Биты данных	5,6,7,8					
Стоповых бит	1, 2					
Четность	нет, чет, нечет					
Управление потоками данных	RTS/CTS, XON/XOF, HET					
Передаваемые сигналы RS-232	TXD, RXD, RTS, CTS, DCD,DTR, DSR,GND					
Дискретные вх	одные каналы					
Количество входных	4					
изолированных каналов						
Диапазон входного напряжения	030 B					
Максимальный входной ток	12 mA					
Уровень логической единицы, не	12 B					
менее	12 0					
Уровень логического нуля, не более	10 B					
Электрическая прочность изоляции	500 B					

1.3 Устройство и работа

Блок BCE-2 построен с использованием OEM-компонентов фирмы MOXA.

1.3.1 Конструкция блока

Блок BCE-2 выполнен в сборном пластмассовом корпусе с креплением на DIN-рейку. Внешний вид блока BCE-2 и расположение разъёмов на корпусе показано на рисунке 1.

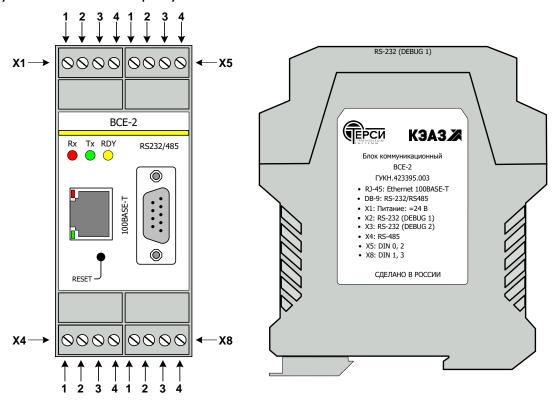


Рисунок 1 Внешний вид блока ВСЕ-2 и расположение разъёмов

1.3.2 Индикация

На лицевой стороне корпуса расположены светодиоды, предназначены для индикации состояния блока BCE-2:

- зеленый светодиод «RDY» мигает во время инициализации блока после включения питания, горит в рабочем состоянии блока;
- желтый светодиод «Тх» горит во время передачи данных в интерфейс RS-232/485;
- красный светодиод «Rx» горит во время приема данных из интерфейса RS-232/485;
- светодиоды, встроенные в разъём RJ-45, сигнализируют о скорости обмена данными по сети Ethernet, красный 10 Мбит/с, зеленый 100 Мбит/с.

1.3.3 Разъемы и интерфейсы

Назначение и номера контактов разъёмов блока ВСЕ-2 указаны в таблице 2.

Таблица 2

Назначение	Разъём	Наименование сигнала	Номер контакта
	DB-9	DCD	1
RS-232		RxD	2
		TxD	3
		DTR	4
		GND	5
		DSR	6
		RTS	7
		CTS	8
		Α	3
RS-485	DB-9	В	4
		GND	5
	X4	Α	1
RS-485		В	2
		GND	
DIN 1	X5	DIN0+	1
		DIN0-	2
DIN 2	X5	DIN2+	3
		DIN2-	4
DIN 3	X8	DIN3+	1
	Λο	DIN3-	2
DIN 4	X8	DIN1+	3
		DIN1-	4
PWR	X1	+24	4
L AA L		GND	1

1.3.4 Перемычки на плате блока

Расположение перемычек на плате блока показано на рисунке 2.

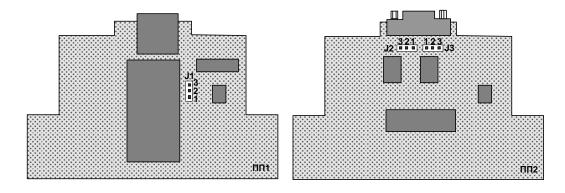


Рисунок 2 Расположение перемычек на платах блока ВСЕ-2

Выбор типа последовательного порта RS-232 или RS-485 для использования производится перемычкой J1.

Перемычки J2 и J3 предназначены для переключения сигналов порта RS-485 с разъема X4 на разъем DB-9. Установка перемычек производится в соответствии с таблицей 3.

Таблица 3

Тип порта	Разъем	J1	J2 [*]	J3 [*]
RS-232	DB9	1-2	2-3	2-3
RS-485	X4	2-3	2-3	2-3
RS-485	DB9	2-3	1-2	1-2

* Перемычки J2 и J3 могут не устанавливаться при изготовлении. В этом случае контакты 2 и 3 соединены печатными проводниками. Для вывода сигналов RS-485 на разъем DB-9 необходимо разрезать проводники и пайкой соединить контакты 1 и 2.

1.3.5 Кнопка сброса

На лицевой панели установлена кнопка «RESET», возвращающая блок BCE-2 к настройкам по умолчанию.

1.3.6 Работа в режиме подключения устройств

Для работы в режиме подключения удаленного устройства на контроллере (компьютере пользователя) устанавливается драйвер виртуального СОМ-порта.

Драйвер отображает СОМ-порт на контроллере на IP-адрес блока BCE-2. Он перехватывает данные, передаваемые контроллером (компьютером пользователя) в порт, а затем перенаправляет их по сети Ethernet в блок BCE-2. На другой стороне соединения блок принимает данные и отсылает их в присоединенное устройство по интерфейсу RS-232/485. Таким образом, контроллер работает с подключенным к блоку BCE-2 устройством, как если бы оно было подключено непосредственно к СОМ-порту контроллера.

1.3.7 Работа в режиме удлинения линии связи

В режиме удлинения линии связи используются два блока ВСЕ-2. Первый блок настраивается на работу в качестве сервера, ему присваивается уникальный IP-адрес. Второй блок настраивается на работу в качестве клиента, он будет автоматически устанавливать соединение с первым блоком по сети Ethernet.

После создания соединения второй блок принимает данные по интерфейсу RS-232/485 и перенаправляет их по сети в первый блок. На другой стороне соединения первый блок принимает данные и отсылает их на присоединенное устройство по интерфейсу RS-232/485. Аналогичным

образом выполняется передача данных в обратную сторону. Таким образом, два устройства обмениваются данными, как если бы они были соединены непосредственно через интерфейс RS-232/485.

1.3.8 Дискретные входные каналы

Для получения данных входных дискретных каналов блока BCE-2 используются специальные команды, отправляемые блоку по сети Ethernet на TCP порт 5001. Описание команд и примеры C-кода приведены в приложении D руководства по настройке «MiiNePort E2 User's Manual».

1.4 Маркировка

Наклейка с индексом изделия, датой изготовления и серийным номером расположена на печатной плате внутри корпуса блока ВСЕ-2.

2 использование по назначению

2.1 Эксплуатационные ограничения

Все работы по монтажу, пуско-наладке и техническому обслуживанию блока ВСЕ-2 должны осуществляться подготовленным персоналом эксплуатирующих организаций или специализированными подразделениями предприятия-изготовителя.

К работе с блоком ВСЕ-2 допускаются лица, имеющие квалификационную группу по электробезопасности не ниже III, прошедшие обучение и аттестованные на предмет знаний действующих Государственных и ведомственных документов по безопасности и охране труда, прошедшие местный инструктаж по безопасности труда, а также изучившие следующую документацию:

- Блок коммуникационный BCE-2. Руководство по эксплуатации ГУКН.423395.003РЭ;
- Измерительно-управляющая система на основе программнотехнического комплекса «Каскад-САУ». Руководство по эксплуатации ГУКН.421457.002РЭ.

2.2 Подготовка изделия к использованию

Перед использованием блока BCE-2 необходимо установить тип используемого порта RS-232 или RS-485 с помощью перемычек в соответствии с пунктом 1.3. Для этого нужно, нажав на боковые защелки, вытащить плату блока BCE-2 с передней панелью из корпуса (см. рисунок 3).

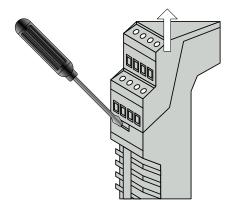


Рисунок 3 Извлечение платы блока ВСЕ-2 из корпуса

После монтажа блока BCE-2 на DIN-рейку необходимо подключить цепи питания, интерфейсные линии и, при необходимости, цепи дискретных входов. Схема подключения дискретных датчиков типа «сухой контакт» показана на рисунке 4.

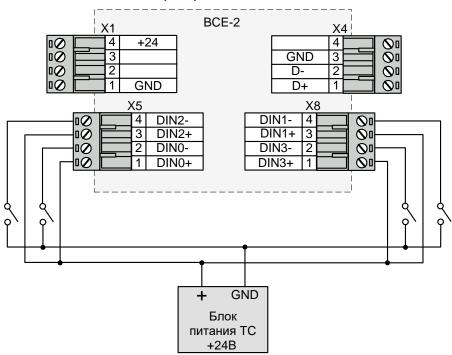


Рисунок 4 Схема подключения блока ВСЕ-2

Для подключения кабелей к разъёмам X1...X8 используются розетки с винтовыми клеммами типа MSTBT 2,5/4-ST (Phoenix Contact, Apt.N $^{\circ}$ 1779851). Розетки в комплект поставки блока BCE-2 не входят и при необходимости заказываются отдельно.

Перед началом работы блоку необходимо назначить IP-адрес, установить требуемый режим работы и параметры порта. Порядок настройки блока описан в разделе 3.

Для обеспечения работы с блоком BCE-2 в режиме подключения удаленного устройства на компьютере пользователя необходимо установить драйвер виртуального порта в соответствии с руководством по настройке «MiiNePort E2 User's Manual».

2.3 Пробное включение

При подаче на блок BCE-2 напряжения питания на лицевой стороне корпуса начинает мигать светодиод «RDY». По окончании инициализации блока светодиод «RDY» начинает гореть постоянно. Блок готов к работе.

Если по истечении минуты после включения блока светодиод «RDY» все еще не горит, или не мигают светодиоды «Tx» и «Rx», необходимо следовать инструкциям пункта 2.4.

Примечание. Время инициализации блока ВСЕ-2 от момента включения питания до готовности к работе составляет около 15 секунд.

2.4 Диагностика и устранение неисправностей

Состояние блока ВСЕ-2 отображают мигающие светодиоды на лицевой стороне корпуса.

Отсутствие постоянного свечения светодиода «RDY» по истечении минуты после включения питания означает неисправность блока. Блок подлежит отправке в ремонт.

Отсутствие мигания светодиода «Тх» в режиме подключения удаленного устройства означает отсутствие запросов от контроллера (компьютера пользователя) к блоку ВСЕ-2. Для устранения неисправности следует проверить правильность настройки IP-адреса блока (см. пункт 3.2) и настроек драйвера виртуального порта на контроллере (компьютере пользователя).

Отсутствие мигания светодиода «Тх» в режиме удлинения линии связи означает отсутствие связи между парой блоков ВСЕ-2. Для устранения неисправности следует проверить правильность настройки IP-адресов (см. пункт 3.2) и режимов работы блоков (см. пункт 3.6).

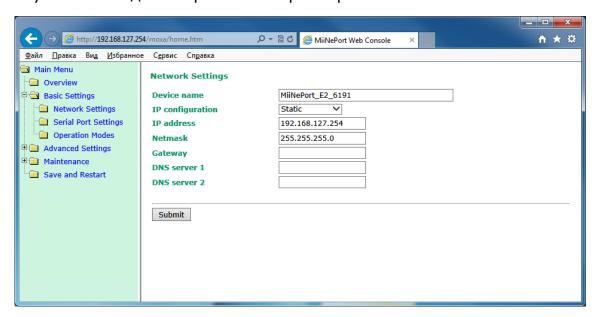
Отсутствие мигания светодиода «Rx» при мигающем светодиоде «Tx» означает, что устройство, подключенное к интерфейсу RS-232/485, не отвечает. Для устранения неисправности следует проверить соответствие перемычки J1 типу выбранного порта, проверить настройки параметров порта блока (см. пункт 3.4) и их совпадение с параметрами порта подключенного устройства.

З настройка блока

3.1 Настройка с помощью Веб-консоли.

Блок BCE-2 поддерживает настройку параметров с помощью Вебконсоли. Подробное описание порядка настройки блока приведено в руководстве по настройке «MiiNePort E2 User's Manual». Для открытия окна Веб консоли подключите блок к сети Ethernet, запустите браузер, например, Internet Explorer, введите в адресной строке адрес:

http://192.168.127.254

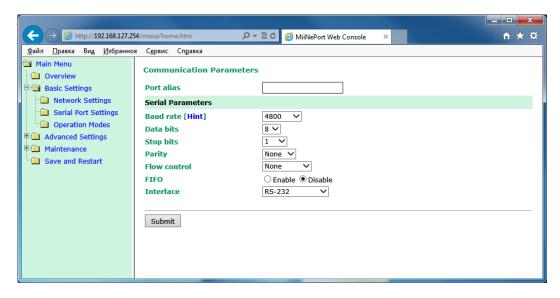

и нажмите клавишу ВВОД. Если блок имеет другой IP-адрес, введите его адрес в адресной строке.

Откроется страница Веб-консоли. Слева на странице находится навигационное меню для перехода по страницам настроек различных параметров блока. При выборе любого пункта этого меню в главном окне будет отображаться соответствующие параметры для настройки.

3.2 Настройка ІР-адреса

Для настройки IP-адреса блока BCE-2 щелкните слева Basic Settings, затем Network Settings. Откроется страница сетевых настроек блока.

В поле «IP configuration» выберите «Static», в поле «IP address» введите новый IP-адрес блока, в поле «Netmask» введите маску подсети. При необходимости укажите адрес шлюза поле «Gateway». Нажмите кнопку «Submit» для сохранения параметров.

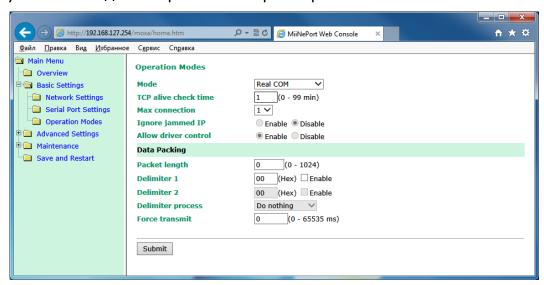

3.3 Настройки IP-адреса по умолчанию

По умолчанию блок ВСЕ-2 имеет следующий ІР-адрес:

192.168.127.254

3.4 Настройка параметров последовательного порта

Для настройки параметров подключения устройства к последовательному порту RS-232/485 блока BCE-2 щелкните слева Basic Settings, затем Serial Port Settings. Откроется страница настроек порта.

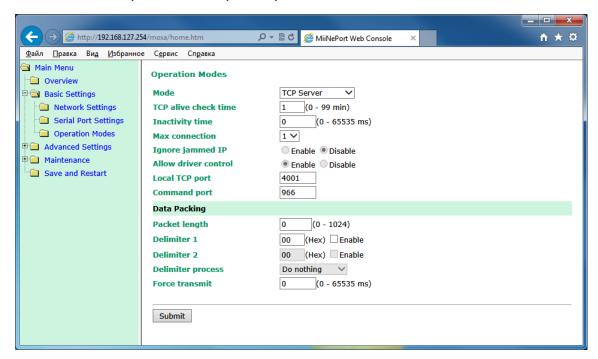

В поле «Baud rate» выберите скорость соединения. В поле «Data bits» выберите количество битов данных. В поле «Stop bits» выберите количество стоповых битов. В поле «Parity» выберите режим контроля четности. В поле «Flow control» выберите режим управления потоком. Переключатель «FIFO» в большинстве случаев должен быть установлен в положение «Disabled». В поле «Interface» укажите тип порта. Нажмите кнопку «Submit» для сохранения параметров.

Внимание! Значение поля «Interface» должно соответствовать положению перемычки J1 на плате блока.

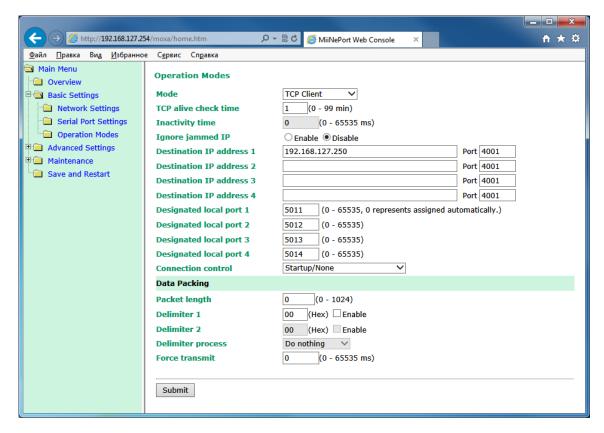
3.5 Настройка режима подключения удаленных устройств

Для установки режима работы блока BCE-2 щелкните слева Basic Settings, затем Operation Modes. Откроется окно настройки режима работы блока.

Для переключения блока в режим подключения удаленных устройств выберите в поле «Mode» режим «Real COM». В поле «TCP alive check time» введите значение 1, в поле «Max connections» установите значение 1, остальные параметры оставьте со значениями по умолчанию. Нажмите кнопку «Submit» для сохранения параметров.



3.6 Настройка режима удлинения линии связи


Для установки режима работы блока BCE-2 щелкните слева Basic Settings, затем Operation Modes.

В режиме удлинения линии связи используется пара блоков ВСЕ-2. Настройки режима для обоих блоков отличаются.

Для первого блока выберите в поле «Mode» режим «TCP Server». В поле «TCP alive check time» введите значение 1, в поле «Inactivity time» введите 0, в поле «Мах connections» установите значение 1, остальные параметры оставьте со значениями по умолчанию. Нажмите кнопку «Submit» для сохранения параметров.

Для второго блока выберите в поле «Mode» режим «TCP Client». В поле «TCP alive check time» введите значение 1, в поле «Destination IP address 1» введите IP-адрес первого блока, остальные параметры оставьте со значениями по умолчанию. Нажмите кнопку «Submit» для сохранения параметров.

3.7 Сброс параметров блока

Для сброса параметров блока BCE-2, включая IP-адрес, к настройкам по умолчанию нажмите кнопку «Reset» на лицевой панели блока.

4 техническое обслуживание

Блок BCE-2 не требует систематического ухода, кроме удаления пыли и загрязнений.

5 транспортирование и хранение

Транспортирование блока ВСЕ-2 в упаковке осуществляется любым видом закрытого транспорта без ограничения расстояния, скорости и высоты. Во время погрузо-разгрузочных работ и транспортирования изделие не должно подвергаться резким ударам и воздействию атмосферных осадков.

Общие требования к транспортированию блока BCE-2 должны соответствовать ГОСТ 12997-84.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноврск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокуанецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (352)37-68-04 Пена (8412)22-31-16 Казахстан (772)734-952-31

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)223-73-35
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тупа (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (842)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93